海外优秀数学类教材系列丛书:微积分 电子书下载 PDF下载

海外优秀数学类教材系列丛书:微积分
内容简介
《微积分》(下)(第5版影印版)为海外优秀数学类教材系列丛书之一,从ThomsonLearning出版公司引进,本教材2003年全球发行约40余万册,在美国,占领了50%-80%的微积分教材市场,其用户包括耶鲁大学等名牌院校及众多一般院校600多所。《微积分》(下)(第5版影印版)历经多年教学实践检验,内容翔实,叙述准确、对每个重要专题,均用语言地、代数地、数值地、图像地予以陈述。作者及其助手花费了三年时间,在各种媒体中寻找了最能反映应用微积分的教学实例,并把它们编入了教材。因此,《微积分》例、习题贴近生活实际,能充分调动学生学习的兴趣,此外。《微积分》语言朴实、流畅.可读性强,比较适合非英语国家的学生阅读。值的一提的是,《微积分》较好地利用了科技。随书附赠两张CD-ROM,一张称为“感受微积分”,提供了一个实验环境,如同一个无声的老师,用探索、发现式的方法逐步引导学生分析并解决问题,还能链接到学习网站www.stewartcalculus.com。另一张称为“交直学习微积分”,包含有与微积分教学有关的视频与音频等。
  
  
  〈a href="http://www.amazon.cn/gp/product/0495382736?ver=gp&qid=1277962890&ref_=sr_1_1&sr=1-1&s=books"〉〈strong〉强力推荐:Calculus: Early Transcendentals 英文原版火热发售〈/strong〉〈/a〉 ·查看全部>>
目录
Preface  xiv
To the Student  xxvi
A Preview of Calculus  2
1 Functions and Hodels  10
1.1  Four Ways to Represent a Function  11
1.2  Mathematical Models: A Catalog of Essential Functions  25
i.3  New Functions from Old Functions  38
1.4  Graphing Calculators and Computers  48
1.5  Exponential Functions  55
1.6  Inverse Functions and Logarithms  63
Review  77
Principles of Problem Solving  80
2 Limils and Derivatives  8G
2.1  The Tangent and Velocity Problems  87
2.2  The Limit of a Function  92
2.3  Calculating Limits Using the Limit Laws  104
2.4  The Precise Definition of a Limit  114
2.5  Continuity  124
2.6  Limits at Infinity; Horizontal Asymptotes  135
2.7  Tangents, Velocities, and Other Rates of Change  149
2.8  Derivatives  158
Writing Project o Early Methods for Finding Tangents  164
2.9  The Derivative as a Function  165
Review  176
Problems Plus  180
3 Lifferenliatiun Rules  182
3.1  Derivatives of Polynomials and Exponential Functions  183
3.2  The Product and Quotient Rules  192
3.3  Rates of Change in the Natural and Social Sciences  199
3.4  Derivatives of Trigonometric Functions  211
3.5  The Chain Rule  217
3.6  Implicit Differentiation  227
3.7  Higher Derivatives  236
Applied Project o Where Should a Pilot Start Descent?  243
Applied Project o Building a Better Roller Coaster  243
3.8  Derivatives of Logarithmic Functions  244
3.9  Hyperbolic Functions  250
3.10  Related Rates  256
3.11  Linear Approximations and Differentials  262
Laboratory Project o Taylor Polynomials  269
Review  270
Problems Plus  274
4 Applications of gifferenliulion  278
4.1  Maximum and Minimum Values  279
Applied Project o The Calculus of Rainbows  288
4.2  The Mean Value Theorem  290
4.3  How Derivatives Affect the Shape of a Graph  296
4.4  Indeterminate Forms and LHospitals Rule  307
Writing Project o The Origins of LHospitars Rule  315
4.5  Summary of Curve Sketching  316
4.6  Graphing with Calculus and Calculators  324
4.7  Optimization Problems  331
Applied Project o The Shape of a Can  341
4.8  Applications to Business and Economics  342
4.9  Newtons Method  347
4.10  Antiderivatives  353
Review  361
Problems Plus  365
5 Inteorals  360
5.1  Areas and Distances  369
5.2  The Definite Integral  380
Discovery Project o Area Functions  393
5.3  The Fundamental Theorem of Calculus  394
5.4  Indefinite Integrals and the Net Change Theorem  405
Writing Project o Newton, keibniz, and the Invention of Calculus  413
5.5  The Substitution Rule  414
5.6  The Logarithm Defined as an Integral  422
Review  430
Problems Plus  434
6 Applicotions of Inteoration  436
6.1  Areas between Curves  437
6.2  Volumes  444
6.3  Volumes by Cylindrical Shells  455
6.4  Work  460
6.5  Average Value of a Function  464
Applied Project o Where to Sit at the Movies  468
Review  468
Problems Plus  470
7 Techniques of Integration  474
7.1  Integration by Parts  475
7.2  Trigonometric Integrals  482
7.3  Trigonometric Substitution  489
7.4  Integration of Rational Functions by Partial Fractions  496
7.5  Strategy for Integration  505
7.6  Integration Using Tables and Computer Algebra Systems 511
Discovery Project o Patterns in Integrals  517
7.7  Approximate Integration  518
7.8  Improper Integrals  530
Review  540
Problems Plus  543
8 Further Applications of Inteoralion  546
8.1  Arc Length  547
Discovery Project o Arc Length Contest  554
8.2  Area of a Surface of Revolution  554
Discovery Project o Rotating on a Slant  560
8.3  Applications to Physics and Engineering  561
8.4  Applications to Economics and Biology  571
8.5  Probability 575
Review  582
Problems Plus  584
9 Diffeiential Equations  586
9.1  Modeling with Differential Equations  587
9.2  Direction Fields and Eulers Method  592
9.3  Separable Equations  601
Applied Project How Fast Does a Tank Drain?  609
Applied Project Which Is Faster, Going Up or Coming Down?  610
9.4  Exponential Growth and Decay  611
Applied Project Calculus and Baseball  622
……
10 Parametric Equations and Polar Coordinates
11 Infinite Sequences and Series
12 Vectors and the Geometru of Space
13 Vector Functions
14 Partial Derivatives
15 Multiple Integrals
16 Vector Calculus
17 Second-Order Offerential Equations
Appendixes
Index
Copyright © 2024 by topbester.com.
All Rights Reserved.
沪ICP备14027842号-1