本书是深度学习领域的入门教材,系统地整理了深度学习的知识体系,并由浅入深地阐述了深度学习的原理、模型以及方法,使得读者能全面地掌握深度学习的相关知识,并提高以深度学习技术来解决实际问题的能力。
全书共15章,分为三个部分。
·第一部分为机器学习基础:第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者全面了解相关知识;第2~3章介绍机器学习的基础知识。
·第二部分是基础模型:第4~6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络;第7章介绍神经网络的优化与正则化方法;第8章介绍神经网络中的注意力机制和外部记忆;第9章简要介绍一些无监督学习方法;第10章介绍一些模型独立的机器学习方法,包括集成学习、自训练、协同训练、多任务学习、迁移学习、终身学习、元学习等。
·第三部分是进阶模型:第11章介绍概率图模型的基本概念,为后面的章节进行铺垫;第12章介绍两种早期的深度学习模型:玻尔兹曼机和深度信念网络;第13章介绍深度生成模型,包括变分自编码器和生成对抗网络;第14章介绍深度强化学习;第15章介绍应用十分广泛的序列生成模型。
本书可作为高等院校人工智能、计算机、自动化、电子和通信等相关专业的研究生或本科生教材,也可供相关领域的研究人员和工程技术人员参考。
本书还配备了教学PPT、编程练习以及课后习题的讨论,
获取方式:
1.微信关注“华章计算机”(微信号:hzbook_jsj)
2.在后台回复关键词:蒲公英书