本书深入浅出地介绍了扩散模型的知识,案例丰富,讲解细致。第1章介绍AIGC与相关技术,第2章从三个视角介绍扩散模型的基本理论、算法,此外介绍了扩散模型的神经网络架构和代码实现。第3章、第4章、第5章分别从高效采样、似然优化、数据结构三个方面系统介绍了扩散模型的特点,以及后续的改进工作。第6章讨论了扩散模型与其他生成模型的关联,包括变分自编码器、生成对抗网络、归一化流、自回归模型和基于能量的模型。第7章介绍了扩散模型的应用,包括计算机视觉、自然语言处理、时间数据建模、多模态学习、鲁棒学习和跨学科应用。第8章讨论了扩散模型的未来,以及与GPT和大模型的关联。
本书适合高等院校计算机科学、人工智能和医学、生物学等交叉学科专业的师生,以及相关人工智能应用程序的开发人员阅读