《林业信息化系列研究成果之六:人工神经网络在森林资源动态监测中的应用》以浙江省重点林业县级市(龙泉市)为研究区域,以森林资源蓄积量为主要监测指标,通过整合遥感影像、数字高程模型、森林资源二类调查数据、固定样地调查数据等多源数据,建立了包含土层厚度、A层厚度、海拔、坡度、坡向、地表曲率、太阳辐射指数、地形湿度指数、树龄、郁闭度、归一化植被指数、TM影像中的6个波段(B1、B2、B3、B4、B5、B7)的17个指标在内的自变量因子集。通过多项式拟合,结合经验数据求取各自变量因子的隶属度,按优势树种(分别为杉木、马尾松、硬阔类、黄山松)建立了基于Levenberg-Marquardt优化算法改进的BP神经网络模型。在此基础上,对研究区域各森林资源小班或细班的平均单位蓄积量进行仿真、反演和预测,总体精度均超过90%,高于森林资源二类调查的蓄积量总体抽样精度标准,可用于自然生长状态下的森林资源小班蓄积量数据的动态更新。可供森林资源管理工作者、信息技术应用人员、信息系统研究与开发人员参考使用