《大数据挖掘与统计机器学习(第2版)/大数据分析统计应用丛书》介绍数据挖掘与统计机器学习领域常用的模型和算法,包括基础的线性回归和线性分类方法,以及模型选择和模型评价的概念和方法,进而介绍非线性的回归和分类方法(包括决策树与组合方法、支持向量机、神经网络以及在此基础上发展的深度学习方法)。最后介绍无监督的学习中的聚类方法和业界广泛使用的推荐系统方法。除了方法的理论讲解之外,我们给出了每种方法的R语言及Python语言实现。
《大数据挖掘与统计机器学习(第2版)/大数据分析统计应用丛书》的一个亮点是最后一章给出的三个大数据案例,数据量均在10G左右。