这是一本将机器学习算法应用于金融建模的实战指南。过去几十年,金融业一直过于依赖简单的统计技术来识别数据中的模式,机器学习有望改变这种现状。在未来几年,机器学习算法将会给金融领域带来颠覆性变化。
《金融机器学习》这本书的作者马科斯·洛佩斯·德普拉多集投资经理、教授、研究员三重身份于一身,20多年来致力于通过普及机器学习算法和超级计算的使用,以及开发识别错误投资策略(假阳性)的统计测试,实现金融领域的现代化。在这本书中,他结合学术视角和丰富的行业经验,提供了一系列科学合理的工具和方法,解释了投资组合经理如何使用机器学习来推导、测试和使用交易策略。
《金融机器学习》这本书分为5部分。第1部分介绍了如何构造适合机器学习算法的金融数据;第2部分介绍了如何科学地应用机器学习算法研究这些数据并获得实际发现;第3部分介绍了如何回测以及评估模型错误的概率;第4部分回归到数据,解释从中提取信息特征的创新方法;第5部分介绍了高性能计算方法。书中大多数问题和解决方法都是用数学公示来解释的,并提供了代码片段和练习,具有很强的实操性,可以作为金融领域投资人士的工具书。