多运动平台协同导航的分散式算法研究 电子书下载 PDF下载

多运动平台协同导航的分散式算法研究
内容简介
《多运动平台协同导航的分散式算法研究》共分为6章。第1章阐述了多运动平台协同导航的研究背景和意义,总结了分散式数据融合技术和贝叶斯网络推理算法的研究现状。第2章建立了协同导航的状态空间模型和概率图模型。第3章设计了增广信息滤波协同导航算法。  分析了增广信息滤波的运算特点,指出状态恢复是全局运算,并给出了适合分散式实现的基于矩阵分解的状态恢复算法。第4章提出了分散式增广信息滤波协同导航算法。算法包含单平台局部数据融合和状态恢复两部分,状态恢复的求解实际上是平台间进行信息共享的过程。建立了一套分散式算法的性能评价指标,并分析了分散式增广信息滤波的各项性能。第5章提出了一种新的高斯动态贝叶斯网络推理算法。针对变量间存在确定性关系的贝叶斯网络,提出了矩参数懒惰推理算法,为高斯贝叶斯网络的推理提供了通用、直接的解决方案。针对动态贝叶斯网络的推理,设计了新的递增动态联合树算法。上述两个新算法结合起来可以对高斯动态贝叶斯网络进行推理,从而为协同导航分散式联合树算法设计奠定了基础。第6章提出了协同导航分散式联合树算法框架。分析了算法的复杂度及工作负载均衡性,比较研究了分散式卡尔曼滤波和矩参数分散式联合树算法,以及分散式增广信息滤波和分散式信息参数联合树算法。
Copyright © 2025 by topbester.com.
All Rights Reserved.
沪ICP备14027842号-1