算子迭代与自相似集 电子书下载 PDF下载

算子迭代与自相似集
内容简介
  《算子迭代与自相似集》主要涉及算子迭代与自相似集两个方面,系统介绍了若干压缩算子通过Picard迭代得到的不动点结果及其在迭代函数系统中的应用,进而介绍了若干新的分形吸引子的生成机制;并用较多的篇幅全面介绍了相似压缩生成的自相似集的Hausdorff测度和上凸密度的若干问题。全书共分七章和一个附录。第1章属预备章节,介绍与测度与维数相关的基本定义、术语、符号和有关的基本命题;第2章讨论各种压缩算子的迭代及其不动点结果;第3章介绍Hutchinson迭代函数系统与自相似集;第4章讨论(L,M,N)-迭代函数系统及其吸引子的存在性问题;第5章讨论n维欧氏空间中的自相似集的Hausdorff测度和有关问题;第6章讨论上凸密度与最好Hs-几乎处处覆盖;第7章介绍相似压缩不动点的若干结果。在附录A中简单介绍必需的集合论、度量空间的基础知识。《算子迭代与自相似集》内容丰富,论述严谨,条理清楚,图文并茂,并具有较好的自封性。《算子迭代与自相似集》不仅介绍算子迭代生成的迭代函数系统和自相似集的Hausdorff测度一般理论,而且还论述了近年来关于迭代函数系统和自相似集的Hausdorff测度的若干新理论与新方法,以及相关的公开问题。
  《算子迭代与自相似集》可供大学教师和科研工作者学习与研究使用,也可作为高年级本科生、研究生的教材和参考书。
Copyright © 2024 by topbester.com.
All Rights Reserved.
沪ICP备14027842号-1