土壤水分能够直接影响植被蒸腾及光合作用,开展土壤水分监测对于农作物长势分析与产量估算具有重要意义。卫星微波遥感技术是获取全球尺度、连续时间序列的陆地表层土壤水分数据的重要手段,但是当前卫星土壤水分数据难以满足农业生产领域的监测应用与研究分析需求。《人工智能驱动的土壤水分数据时空序列重建研究》利用人工智能算法在多维数据非线性特征映射中的优势,发展高分辨率高精度土壤水分重构模型,研制可靠的高时空分辨率土壤水分数据,解决遥感土壤水分数据时空分辨率低、区域尺度适用性差等问题。这不仅对于提高星载微波土壤水分数据的质量和精度,推进土壤水分数据重建算法的构建具有重要的参考价值,而且对于农田旱涝预警及作物估产研究、全球生态系统演替及水循环研究也具有重要的科学意义。