《伽罗瓦群论之美:高次方程不可根式求解证明赏析/悦读科学丛书》从分析二次、三次、四次多项式方程求解过程开始。通过从“数集扩大”和“根系对称性”两个角度观察多项式方程求解过程,抽象出两个核心概念“域”和“群”。围绕“域”和“群”,继续以方程求解过程为研究材料,进行再提炼和抽象:发明“域”和“群”的数学运算,揭示多项式根系扩域及其伽罗瓦群的正规性,以及它们之间的对应关系,展示高次方程不可根式求解的机理。
在此基础之上,《伽罗瓦群论之美:高次方程不可根式求解证明赏析/悦读科学丛书》简略探究了伽罗瓦群论诞生的过程,以及对更一般群论的理解,深化对群论的认识。
除此之外,《伽罗瓦群论之美:高次方程不可根式求解证明赏析/悦读科学丛书》还联想阐释:微积分、复变函数,甚至诗歌、绘画,其创造过程与群论创建一脉相承,从而在更广泛意义上,展示抽象的力量,抽象的化繁为简之美。
《伽罗瓦群论之美:高次方程不可根式求解证明赏析/悦读科学丛书》意在希望通过重温或虚构群论发明的抽象过程,展示抽象的力量之美,探讨原创力的根源,启发对教育宗旨和内涵的再思考、再定义。
《伽罗瓦群论之美:高次方程不可根式求解证明赏析/悦读科学丛书》可作为中学生和大学生的素质教育教材,也可供对数学、思想、创造力、教育等领域感兴趣的读者参阅。