工程硕士研究生教材·工程数学上册:数值分析与矩阵论 电子书下载 PDF下载

工程硕士研究生教材·工程数学上册:数值分析与矩阵论
内容简介
培养工程硕士研究生是为适应我国经济建设中对应用型、复合型高层次工程技术和工程管理人才的需要所采取的一项重要举措。“工程数学”课程是工程硕士研究生培养中一门重要的基础课,它适应不同专业、不同学习内容的要求,以及在较少的学时内掌握其所学专业必须具备的数学基础这一实际情况,编写一本可以根据各专家实际情况教学的教材是十分必要的。
  《工程数学》全书分上、下两册,上册由数值分析和矩阵论两部分组成;下册由数理统计和随机过程两部分组成。
  本书为上册。数值分析部分内容由解线性代数方程组的直接法和迭代法、矩阵特征值和特征向量的计算、非线性方程的数值解法、插值与逼近、数值积分、常微分方程初值问题的数值解法等基本内容组成。矩阵部分内容由矩阵基础知识、线性空间与内积空间、线性变换、矩阵的标准型、矩阵函数、广义逆等基本内容组成。书中内容力求精简,系统性强,循序渐进,易于教学。 ·查看全部>>
目录
前言
第I部分 数值分析
第一章 绪论
1.1 计算方法的意义
1.2 误差及有关概念
1.3 数值计算中必须注意的几个原则

第二章 解线性代数方程组的直接法
2.1 Gauss消去法
2.2 矩阵的三角分解
2.3 解三对角方程组的追赶法

第三章 解线性代数方程组的迭代法
3.1 基本迭代法
3.2 范数及方程组的性态、条件数
3.3 收敛性分析
3.4 共轭梯度法

第四章 矩阵的特征值和特征向量的计算
4.1 引言
4.2 乘幂法与反幂法
4.3 Jacobi方法
4.4 QR方法

第五章 非线性方程的数值解法
5.1 二分法
5.2 迭代法
5.3 迭代法的收敛阶和加速收敛方法
5.4 牛顿迭代法
5.5 弦截法

第六章 插值与逼近
6.1 插值的基本概念
6.2 拉格朗日插值
6.3 牛顿插值
6.4 埃尔米特插值
6.5 三次样条插值
6.6 B-样条函数
6.7 正交多项式
6.8 最佳平方逼近
6.9 曲线拟合的最小二乘法

第七章 数值积分
7.1 数值积分概述
7.2 牛顿-柯特斯求积公式
7.3 自适应积分法
7.4 龙贝格求积算法
7.5 高斯求积方法

第八章 常微分方程初值问题的数值解法
8.1 龙拉方法
8.2 龙格-库塔方法
8.3 收敛性与稳定性
习题Ⅰ
习题Ⅰ答案
参考书目Ⅰ
第Ⅱ部分 矩阵论
习题Ⅱ
习题Ⅱ答案
参考书目Ⅱ
Copyright © 2025 by topbester.com.
All Rights Reserved.
沪ICP备14027842号-1